Bayesian Estimations under the Weighted LINEX Loss Function Based on Upper Record Values
Author(s) -
Fuad S. Alduais
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9982916
Subject(s) - weibull distribution , statistics , mathematics , exponential function , reliability (semiconductor) , function (biology) , mean squared error , bayesian probability , bayes estimator , shape parameter , estimation , power (physics) , engineering , mathematical analysis , physics , systems engineering , quantum mechanics , evolutionary biology , biology
The essential objective of this research is to develop a linear exponential (LINEX) loss function to estimate the parameters and reliability function of the Weibull distribution (WD) based on upper record values when both shape and scale parameters are unknown. We perform this by merging a weight into LINEX to produce a new loss function called the weighted linear exponential (WLINEX) loss function. Then, we utilized WLINEX to derive the parameters and reliability function of the WD. Next, we compared the performance of the proposed method (WLINEX) in this work with Bayesian estimation using the LINEX loss function, Bayesian estimation using the squared-error (SEL) loss function, and maximum likelihood estimation (MLE). The evaluation depended on the difference between the estimated parameters and the parameters of completed data. The results revealed that the proposed method is the best for estimating parameters and has good performance for estimating reliability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom