Experimental Analysis of Neural Approaches for Synthetic Angle-of-Attack Estimation
Author(s) -
Angelo Lerro,
Piero Gili,
Mario Luca Fravolini,
Marcello Napolitano
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/9982722
Subject(s) - perceptron , artificial neural network , radial basis function , computer science , redundancy (engineering) , multilayer perceptron , artificial intelligence , applicability domain , synthetic data , avionics , data mining , data pre processing , machine learning , engineering , quantitative structure–activity relationship , aerospace engineering , operating system
Synthetic sensors enable flight data estimation without devoted physical sensors. Within modern digital avionics, synthetic sensors can be implemented and used for several purposes such as analytical redundancy or monitoring functions. The angle of attack, measured at air data system level, can be estimated using synthetic sensors exploiting several solutions, e.g., model-based, data-driven, and model-free state observers. In the class of data-driven observers, multilayer perceptron neural networks are widely used to approximate the input-output mapping angle-of-attack function. Dealing with experimental flight test data, the multilayer perceptron can provide reliable estimation even though some issues can arise from noisy, sparse, and unbalanced training domain. An alternative is offered by regularization networks, such as radial basis function, to cope with training domain based on real flight data. The present work’s objective is to evaluate performances of a single-layer feed-forward generalized radial basis function network for AoA estimation trained with a sequential algorithm. The proposed analysis is performed comparing results obtained using a multilayer perceptron network adopting the same training and validation data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom