z-logo
open-access-imgOpen Access
Deep Learning-Based Image Processing for Cotton Leaf Disease and Pest Diagnosis
Author(s) -
M Azath,
Melese Zekiwos,
Abey Bruck
Publication year - 2021
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2021/9981437
Subject(s) - python (programming language) , deep learning , pest analysis , blight , artificial intelligence , spider mite , machine learning , computer science , agricultural engineering , biology , agronomy , engineering , horticulture , programming language
Cotton is one of the economically significant agricultural products in Ethiopia, but it is exposed to different constraints in the leaf area. Mostly, these constraints are identified as diseases and pests that are hard to detect with bare eyes. This study focused to develop a model to boost the detection of cotton leaf disease and pests using the deep learning technique, CNN. To do so, the researchers have used common cotton leaf disease and pests such as bacterial blight, spider mite, and leaf miner. K-fold cross-validation strategy was worn to dataset splitting and boosted generalization of the CNN model. For this research, nearly 2400 specimens (600 images in each class) were accessed for training purposes. This developed model is implemented using python version 3.7.3 and the model is equipped on the deep learning package called Keras, TensorFlow backed, and Jupyter which are used as the developmental environment. This model achieved an accuracy of 96.4% for identifying classes of leaf disease and pests in cotton plants. This revealed the feasibility of its usage in real-time applications and the potential need for IT-based solutions to support traditional or manual disease and pest’s identification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom