z-logo
open-access-imgOpen Access
Temperature Field Online Reconstruction for In-Service Concrete Arch Dam Based on Limited Temperature Observation Data Using AdaBoost-ANN Algorithm
Author(s) -
Zhuoyan Chen,
Dongjian Zheng,
Jiqiong Li,
Xin Wu,
Jianchun Qiu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9979994
Subject(s) - arch , adaboost , arch dam , artificial neural network , field (mathematics) , engineering , algorithm , finite element method , artificial intelligence , structural engineering , computer science , machine learning , mathematics , support vector machine , pure mathematics
Temperature is one of the factors affecting the safety operation of concrete arch dams. To accurately reconstruct the temperature field of the concrete arch dam online based on the temperature data of several typical dam sections, this paper proposes the AdaBoost-ANN algorithm. The algorithm uses artificial neural network (ANN) to establish a training set of the measured temperature data and the temperature field of the concrete arch dam obtained by the three-dimensional finite element model; these trained artificial neural networks are used as weak classifiers of the AdaBoost algorithm. Then, the AdaBoost-ANN algorithm is used to establish the mapping relationship between the measured temperature data and the temperature field, and the online reconstruction of the temperature field of the concrete arch dam is realized. The case study shows that the temperature field of the concrete arch dam can be accurately established by AdaBoost-ANN algorithm based on limited temperature observation data. The algorithm is more time-saving and labor-saving than the finite element method and is convenient for online reconstruction of the temperature field and assessment of the safety status of the concrete arch dam.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom