z-logo
open-access-imgOpen Access
Research on Airport Target Recognition under Low-Visibility Condition Based on Transfer Learning
Author(s) -
Jiajun Li,
Yongzhong Wang,
Yuexin Qian,
Tianyi Xu,
Kaiwen Wang,
Liancheng Wan
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/9979630
Subject(s) - visibility , artificial intelligence , deep learning , aviation , computer science , transfer of learning , channel (broadcasting) , field (mathematics) , snow removal , artificial neural network , focus (optics) , aviation safety , computer vision , snow , engineering , telecommunications , geography , aerospace engineering , meteorology , physics , mathematics , optics , pure mathematics
Operational safety in the airport is the focus of the aviation industry. Target recognition under low visibility plays an essential role in arranging the circulation of objects in the airport field, identifying unpredictable obstacles in time, and monitoring aviation operation and ensuring its safety and efficiency. From the perspective of transfer learning, this paper will explore the identification of all targets (mainly including aircraft, humans, ground vehicles, hangars, and birds) in the airport field under low-visibility conditions (caused by bad weather such as fog, rain, and snow). First, a variety of deep transfer learning networks are used to identify well-visible airport targets. The experimental results show that GoogLeNet is more effective, with a recognition rate of more than 90.84%. However, the recognition rates of this method are greatly reduced under the condition of low visibility; some are even less than 10%. Therefore, the low-visibility image is processed with 11 different fog removals and vision enhancement algorithms, and then, the GoogLeNet deep neural network algorithm is used to identify the image. Finally, the target recognition rate can be significantly improved to more than 60%. According to the results, the dark channel algorithm has the best image defogging enhancement effect, and the GoogLeNet deep neural network has the highest target recognition rate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom