z-logo
open-access-imgOpen Access
Approximation by One and Two Variables of the Bernstein-Schurer-Type Operators and Associated GBS Operators on Symmetrical Mobile Interval
Author(s) -
Reşat Aslan,
Aydın İZGİ
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 28
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/9979286
Subject(s) - mathematics , modulus of continuity , bivariate analysis , type (biology) , univariate , bernstein polynomial , operator (biology) , convergence (economics) , operator theory , discrete mathematics , pure mathematics , multivariate statistics , statistics , ecology , biochemistry , chemistry , repressor , gene , transcription factor , economics , biology , economic growth
In this article, we purpose to study some approximation properties of the one and two variables of the Bernstein-Schurer-type operators and associated GBS (Generalized Boolean Sum) operators on a symmetrical mobile interval. Firstly, we define the univariate Bernstein-Schurer-type operators and obtain some preliminary results such as moments, central moments, in connection with a modulus of continuity, the degree of convergence, and Korovkin-type approximation theorem. Also, we derive the Voronovskaya-type asymptotic theorem. Further, we construct the bivariate of this newly defined operator, discuss the order of convergence with regard to Peetre’s K -functional, and obtain the Voronovskaya-type asymptotic theorem. In addition, we consider the associated GBS-type operators and estimate the order of approximation with the aid of mixed modulus of smoothness. Finally, with the help of the Maple software, we present the comparisons of the convergence of the bivariate Bernstein-Schurer-type and associated GBS operators to certain functions with some graphical illustrations and error estimation tables.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom