Finite Element Analysis on Acoustic and Mechanical Performance of Flexible Perforated Honeycomb-Corrugation Hybrid Sandwich Panel
Author(s) -
Jiaming Hu,
Junyi Wang,
Yu Xie,
Chenzhi Shi,
Yun Chen
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/9977644
Subject(s) - materials science , finite element method , dissipation , stiffness , composite material , structural engineering , honeycomb , sandwich panel , noise control , specific modulus , honeycomb structure , vibration , elastic modulus , acoustics , engineering , noise reduction , physics , thermodynamics
Since proposed, the perforated honeycomb-corrugation sandwich panel has attracted a lot of attention due to its superior broadband sound absorption at low frequencies and excellent mechanical stiffness/strength. However, most existing studies have assumed a structure made of high-strength materials and studied its performance based on the ideal rigid-wall model with little consideration for acoustic-structure interaction, thereby neglecting the structural vibrations caused by the material’s elasticity. In this paper, we developed a more realistic model considering the solid structural dynamics using the finite element method (FEM) and by applying aluminum and rubber as the structural material. The enhancement of the low-frequency performance and inhibition of broadband absorption coexisted in low-strength rubbers, implying a compromise in the selection of Young's modulus to balance these two influences. Further analysis on thermal-viscous dissipation, mechanical energy, and average structural stress indicated that the structure should work right below the resonant frequency for optimization. Based on these findings, we designed a novel aluminum-rubber composite structure possessing enhanced low-frequency absorption, high resistance to shear load, normal compression, and thermal expansion. Our research is expected to shed some light on noise control and the design of multifunctional acoustic metamaterials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom