Modelling and Simulation of Distributed UAV Swarm Cooperative Planning and Perception
Author(s) -
Haifeng Ling,
Hongchuan Luo,
Haisong Chen,
Linyuan Bai,
Tao Zhu,
Yanjun Wang
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/9977262
Subject(s) - swarm behaviour , computer science , distributed computing , perception , crowd simulation , imperfect , systems engineering , simulation , control engineering , engineering , artificial intelligence , linguistics , philosophy , computer security , neuroscience , biology , crowds
As an emerging topic, the swarm of autonomous unmanned aerial vehicles (UAVs) has been attracting great attention. Due to the indeterminacy of sensors, distributed cooperative swarms have been considered to be efficient and robust but challenging to design and test. To facilitate the development of distributed swarms, it has been proposed to utilise a simulation platform for cooperative UAVs using imperfect perception. However, the existing simulation platforms cannot satisfy this demand due to a few reasons. First, they are designed for a specific purpose, and their functionalities are difficult to extend. Second, the existing platforms lack compatibility to be applied to different types of scenarios. Third, the modelling of these platforms is too simplified to simulate flight motion dynamic and noisy communication accurately, which may cause a difference in performance between the simulation and real-world application. To address the mentioned issues, this paper models the problem and proposes a simulation platform for distributed swarm cooperative perception, which addresses software engineering concerns and provides a set of extendable functionalities of a cooperative swarm, including communication, estimation, perception fusion, and path planning. The applicability of the proposed platform is verified by simulations with the real-world application. The simulation results demonstrate that the proposed system is viable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom