z-logo
open-access-imgOpen Access
Bistable Nonlinear Energy Sink Using Magnets and Linear Springs: Application to Structural Seismic Control
Author(s) -
Yangyang Chen,
Wei Zhao,
C. Y. Shen,
Zhichao Qian
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/9976432
Subject(s) - tuned mass damper , bistability , nonlinear system , magnet , vibration , vibration control , stiffness , damper , sink (geography) , structural engineering , control theory (sociology) , physics , mechanics , materials science , computer science , engineering , acoustics , mechanical engineering , control (management) , cartography , quantum mechanics , artificial intelligence , geography
Nonlinear energy sink (NES) has proven to be very effective in reducing the vibration response of structures. In this paper, a magnetic bistable nonlinear energy sink (BNES) that composed of a guided moving mass attached with linear springs and permanent magnets is proposed. To assess the seismic control performance of the proposed BNES, a shear frame model equipped with the proposed BNES is compared with the same shear frame model equipped with an optimized cubic NES and with a linear tuned mass damper (TMD) system. The results show that, in the idealized situation, where the mass and stiffness is clearly defined (no uncertainty), the BNES can achieve similar performance as a thoroughly in-tuned TMD system. Moreover, in the detuned condition, due to broadband high internal resonance capability, the proposed BNES can outperform the linear TMD and the cubic NES. The study demonstrates that the proposed BNES can be used as an efficient passive vibration absorber for structural seismic control.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom