z-logo
open-access-imgOpen Access
Microbial‐Induced Carbonate Precipitation: A Review on Influencing Factors and Applications
Author(s) -
Junhui Zhang,
Xiuzhi Shi,
Xin Chen,
Xiaofeng Huo,
Zhi Yu
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/9974027
Subject(s) - carbonate , precipitation , geology , geochemistry , environmental science , earth science , mining engineering , materials science , metallurgy , meteorology , geography
Based on recent literary sources, this survey discusses the effects of main factors influencing the microbial-induced calcium carbonate precipitation (MICP), including the bacterial species, bacterial concentration, temperature, and pH value. While the MICP technology has been widely adopted to improve rock and soil characteristics, it has excellent development prospects in many other fields. The breakthrough solutions in the MICP technology are improving geotechnical and foundation sand properties, repairing cement-based materials, using mineralized film mulching to protect cultural relics, enhancing properties of tailings, desert control, and heavy metal environmental restoration, etc., are discussed. The experimental findings prove that MICP can improve the strength, stiffness, liquefaction resistance, erosion resistance, and permeability of geotechnical materials and maintain the good permeability and permeability of the soil and improve the growth environment of plants. It is an environment-friendly bioengineering technology. Because microbial mineralization involves a series of biochemical and ionic chemical reactions, there are many reaction steps in the solidification process and the solidification effect of MICP is restricted and affected by many factors. The comprehensive analysis and optimization strategy on MICP industrial implementation should account for micro- and macro-scale effects: the type of bacteria, the concentration of bacteria and cementation solutions, ambient temperature, pH value, and other factors directly affect the crystallization type, morphology, and size of calcium carbonate from the microscopic standpoint, while the macro-scale factors control the rock and soil mineralization. The limitations and prospects of the MICP technology are outlined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom