z-logo
open-access-imgOpen Access
Quantitative Inversion of Water-Inrush Incidents in Mountain Tunnel beneath a Karst Pit
Author(s) -
Fei Wan,
Peiwen Xu,
Peng Zhang,
Hongfu Qu,
Lihua Wang,
Xuan Zhang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/9971944
Subject(s) - inrush current , karst , geology , hydrogeology , inflow , aquifer , hydrology (agriculture) , groundwater recharge , inversion (geology) , infiltration (hvac) , outflow , geotechnical engineering , mining engineering , groundwater , structural basin , geomorphology , meteorology , engineering , paleontology , oceanography , physics , voltage , electrical engineering , transformer
Quantitative inversion of accidents is an important work of finding the cause of accidents and avoiding their recurrence. However, quantitative inversion of accidents is difficult due to the lack and limitation of accidents monitoring information. Focusing on water-inrush incidents of Jiguan Mountain tunnel, this paper proposes a set of workflows to find out the missing conditions and quantitative inversion of accidents by flow analysis and structural safety analysis on the basis of investigating the rain capacity and water outflow in water-inrush incidents. First, hydraulic boundary in water-inrush incidents is acquired by analyzing the relationship of catchment, infiltration, and accumulation of rainwater in karst pit using the flooding algorithm of ArcGIS and the topographic mapping of UAV photogrammetry. Second, the permeability coefficients of karst infiltration zone and tunnel surrounding rock are acquired by two-step decoupling and inverse analyzing the water inflow, flow rate, and interval time between rainfall and water inrush. Third, tunnel accidents of the overload of tunnel lining induced by the catchment and infiltration of karst pit under extreme rainfall conditions are numerically simulated by using FLAC. The results indicate that quantitative inversion of water-inrush incidents reveals the process and cause of accidents and provides the safety index of tunnel structure. Not only is the water-inrush incidents of karst tunnel controlled by hydrogeology conditions, but also the rainfall recharge should not be ignored.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom