z-logo
open-access-imgOpen Access
Global Bifurcation Structure of a Predator-Prey System with a Spatial Degeneracy and B-D Functional Response
Author(s) -
Xiaozhou Feng,
Changtong Li,
Hao Sun,
Yuzhen Wang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9970255
Subject(s) - bifurcation , mathematics , degenerate energy levels , functional response , saddle node bifurcation , degeneracy (biology) , bifurcation theory , bifurcation diagram , transcritical bifurcation , mathematical analysis , bounded function , steady state (chemistry) , pure mathematics , predation , predator , physics , nonlinear system , biology , chemistry , bioinformatics , quantum mechanics , paleontology
In this paper, we investigate a predator-prey system with Beddington–DeAngelis (B-D) functional response in a spatially degenerate heterogeneous environment. First, for the case of the weak growth rate on the prey ( λ 1 Ω < a < λ 1 Ω 0 ), a priori estimates on any positive steady-state solutions are established by the comparison principle; two local bifurcation solution branches depending on the bifurcation parameter are obtained by local bifurcation theory. Moreover, the demonstrated two local bifurcation solution branches can be extended to a bounded global bifurcation curve by the global bifurcation theory. Second, for the case of the strong growth rate on the prey ( a > λ 1 Ω 0 ), a priori estimates on any positive steady-state solutions are obtained by applying reduction to absurdity and the set of positive steady-state solutions forms an unbounded global bifurcation curve by the global bifurcation theory. In the end, discussions on the difference of the solution properties between the traditional predator-prey system and the predator-prey system with a spatial degeneracy and B-D functional response are addressed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom