An Online Arrangement Method of Difficult Actions in Competitive Aerobics Based on Multimedia Technology
Author(s) -
Li Li
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/9968401
Subject(s) - computer science , key (lock) , multimedia , artificial intelligence , segmentation , key frame , rgb color model , normalization (sociology) , computer vision , frame (networking) , telecommunications , sociology , anthropology , computer security
In accordance with the development trend of competitive aerobics’ arrangement structure, this paper studies the online arrangement method of difficult actions in competitive aerobics based on multimedia technology to improve the arrangement effect. RGB image, optical flow image, and corrected optical flow image are taken as the input modes of difficult action recognition network in competitive aerobics video based on top-down feature fusion. The key frames of input modes in competitive aerobics video are extracted by using the key frame extraction method based on subshot segmentation of a double-threshold sliding window and fully connected graph. Through forward propagation, the score vector of video relative to all categories is obtained, and the probability score of probability distribution is obtained after normalization. The human action recognition in competitive aerobics video is completed, and the online arrangement of difficult action in competitive aerobics is realized based on this. The experimental results show that this method has a high accuracy in identifying difficult actions in competitive aerobics video; the online arrangement of difficult actions in competitive aerobics has obvious advantages, meets the needs of users, and has strong practicability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom