z-logo
open-access-imgOpen Access
Characteristics and Influencing Factors of Microbial Community in Heavy Metal Contaminated Soil under Silicon Fertilizer and Biochar Remediation
Author(s) -
Jiachao Zhang,
Yuewei He,
Yingchun Fang,
Keqi Zhao,
Nanyi Wang,
Yaoyu Zhou,
Lin Luo,
Yuan Yang
Publication year - 2021
Publication title -
adsorption science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.682
H-Index - 36
eISSN - 2048-4038
pISSN - 0263-6174
DOI - 10.1155/2021/9964562
Subject(s) - biochar , fertilizer , environmental chemistry , chemistry , environmental remediation , microbial population biology , soil water , contamination , agronomy , environmental science , ecology , soil science , bacteria , pyrolysis , biology , genetics , organic chemistry
Silicon fertilizer and biochar have been widely used to remediate soil contaminated by heavy metals. The effects and mechanism of silicon fertilizer and biochar addition on the heavy metal availability, soil biological properties, and microbial community characteristics need further study in soils contaminated by heavy metals. Therefore, this research determined how silicon fertilizer, biochar, and their combined using affected microbial communities related with nitrogen and phosphorus cycling. The abundance and composition of the microbial community were evaluated by quantitative PCR and phospholipid fatty acid analysis, respectively. Results showed that silicon fertilizer and biochar addition significantly changed soil properties, including pH, total organic carbon, ammonium, nitrate. The Cd and Zn speciation were significantly reduced by silicon fertilizer, biochar, and their integrated application. Microbial community abundance and structure were also significantly changed. Principal component analysis shows that the difference in soil microbial community structure is the most obvious under the combined addition of biochar, silicon fertilizer and biochar. In addition, the results of fluorescence quantitative PCR showed that with biological addition, the number of soil bacteria was significantly reduced. This study reveals the influence of silicon fertilizer and biochar on bacterial and fungal communities in heavy metal soils and the effect of soil heavy metal availability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom