The Dynamics of a Spatial Economic Model with Bounded Population Growth
Author(s) -
Yue Zhong
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/9963437
Subject(s) - bounded function , population , mathematics , hilbert space , space (punctuation) , capital accumulation , econometrics , mathematical analysis , economics , computer science , human capital , demography , sociology , economic growth , operating system
We investigate a spatial economic growth model with bounded population growth to obtain the asymptotic behavior of detrended capital in a continuous space. The formation of capital accumulation is expressed by a partial differential equation with corresponding boundary conditions. The capital accumulation interacts with the morphology to affect the optimal dynamics of economic growth. After redrafting the spatial growth model in the infinite dimensional Hilbert space, we identify the unique optimal control and value function when the bounded population growth is considered. With nonnegative initial distribution of capital, the explicit solution of the model is obtained. The time behavior of the explicit solution guarantees the convergence issue of the detrended capital level across space and time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom