Study on Intelligent Diagnosis of Rotor Fault Causes with the PSO-XGBoost Algorithm
Author(s) -
Kai Gu,
Jianqi Wang,
Hong Qian,
Xiaoyan Su
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9963146
Subject(s) - particle swarm optimization , computer science , classifier (uml) , algorithm , fault (geology) , data mining , artificial intelligence , seismology , geology
On basis of fault categories detection, the diagnosis of rotor fault causes is proposed, which has great contributions to the field of intelligent operation and maintenance. To improve the diagnostic accuracy and practical efficiency, a hybrid model based on the particle swarm optimization-extreme gradient boosting algorithm, namely, PSO-XGBoost is designed. XGBoost is used as a classifier to diagnose rotor fault causes, having good performance due to the second-order Taylor expansion and the explicit regularization term. PSO is used to automatically optimize the process of adjusting the XGBoost’s parameters, which overcomes the shortcomings when using the empirical method or the trial-and-error method to adjust parameters of the XGBoost model. The hybrid model combines the advantages of the two algorithms and can diagnose nine rotor fault causes accurately. Following diagnostic results, maintenance measures referring to the corresponding knowledge base are provided intelligently. Finally, the proposed PSO-XGBoost model is compared with five state-of-the-art intelligent classification methods. The experimental results demonstrate that the proposed method has higher diagnostic accuracy and practical efficiency in diagnosing rotor fault causes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom