Data Mining Algorithm for Physical Health Monitoring of Young Students Based on Big Data
Author(s) -
Jiangang Sun,
Xiaoran Jiang,
Guoliang Yuan,
Zhenhuai Chen
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/9962906
Subject(s) - big data , spark (programming language) , computer science , process (computing) , physical health , algorithm , data science , data mining , mental health , machine learning , psychology , psychotherapist , programming language , operating system
With the continuous improvement of living standards, the level of physical development of adolescents has improved significantly. The physical functions and healthy development of adolescents are relatively slow and even appear to decline. This paper proposes a novel data mining algorithm based on big data for monitoring of adolescent student's physical health to overcome this problem and enhance young people's physical fitness and mental health. Since big data technology has positive practical significance in promoting young people's healthy development and promoting individual health rights, this article will implement commonly used data mining algorithms and Hadoop/Spark big data processing. The algorithm on different platforms verified that the big data platform has good computing performance for the data mining algorithm by comparing the running time. The current work will prove to be a complete physical health data management system and effectively save, process, and analyze adolescents' physical test data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom