z-logo
open-access-imgOpen Access
Solution of Fully Bipolar Fuzzy Linear Programming Models
Author(s) -
Muhammad Athar Mehmood,
Muhammad Akram,
Majed Alharbi,
Shahida Bashir
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9961891
Subject(s) - fuzzy number , mathematics , fuzzy logic , mathematical optimization , vagueness , defuzzification , fuzzy set operations , linear programming , fuzzy set , computer science , artificial intelligence
The Yin-Yang bipolar fuzzy set is a powerful mathematical tool for depicting fuzziness and vagueness. We first extend the concept of crisp linear programming problem in a bipolar fuzzy environment based on bipolar fuzzy numbers. We first define arithmetic operations of unrestricted bipolar fuzzy numbers and multiplication of an unrestricted trapezoidal bipolar fuzzy number (TrBFN) with non-negative TrBFN. We then propose a method for solving fully bipolar fuzzy linear programming problems (FBFLPPs) with equality constraints in which the coefficients are unrestricted triangular bipolar fuzzy numbers and decision variables are nonnegative triangular bipolar fuzzy numbers. Furthermore, we present a method for solving FBFLPPs with equality constraints in which the coefficients and decision variables are unrestricted TrBFNs. The FBFLPP is transformed into a crisp linear programming problem, and then, it is solved to achieve the exact bipolar fuzzy optimal solution. We illustrate the proposed methodologies with several numerical examples.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom