The Influence Mechanism of In Situ Stress State on the Stability of Deep-Buried-Curved Tunnel in Qinghai-Tibet Plateau and Its Adjacent Region
Author(s) -
Huiqing Wang,
Chengxuan Tan,
Chengjun Feng,
Peng Zhang,
Bangshen Qi,
Zhangliang Tan,
Jing Meng,
Weijun Guo
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/9955497
Subject(s) - plateau (mathematics) , stress (linguistics) , geometry , finite element method , geology , geotechnical engineering , mathematics , engineering , structural engineering , mathematical analysis , philosophy , linguistics
In China, rockburst disaster occurs mostly in construction of underground engineering in Qinghai-Tibet Plateau and its adjacent region. Previous research on deep-buried tunnels has indicated that tunnels stability is related to in situ stress state. To quantify these relationships, three-dimensional finite element modeling was done to analyze the influences that the angle φ between the maximum horizontal principal stress orientation and tunnel axis, and the lateral pressure coefficient KH, had on the tangential stress σ θ in a deep-buried-curved tunnel. Based on the in situ stress condition in Qinghai-Tibet Plateau and its adjacent region, 50 different simulation conditions were used to analyze the relationship that φ and KH had on σ θ for the rock mass surrounding the tunnel. With the simulation data produced, predictive equations were generated for σ θ as a function of φ and KH using multivariate regression analysis. These equations help estimate σ θ at various key positons along the tunnel boundary at Qinghai-Tibet plateau and its adjacent region. The equations were then proved by a set of typical tunnels to ensure validity. The results concluded that the change in φ has a significant impact on σ θ , and thus, the stability of the tunnel, when 30° < φ < 60°, with the most obvious influence being when φ is about 45°. With the equations, the rockburst potential at a certain location within a curved tunnel can be quickly estimated by calculating φ and KH on σ θ , without need of geo-stress background knowledge and heavy simulation, allowing for the practical value in engineering at design phase for the projects in Qinghai-Tibet Plateau and its adjacent region.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom