z-logo
open-access-imgOpen Access
DMTC: Optimize Energy Consumption in Dynamic Wireless Sensor Network Based on Fog Computing and Fuzzy Multiple Attribute Decision-Making
Author(s) -
Abbas Varmaghani,
Ali Matin Nazar,
Mohsen Ahmadi,
Abbas Sharifi,
Saeid Jafarzadeh Ghoushchi,
Yaghoub Pourasad
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/9953416
Subject(s) - computer science , wireless sensor network , energy consumption , fuzzy logic , node (physics) , key distribution in wireless sensor networks , computer network , cluster analysis , wireless network , distributed computing , real time computing , wireless , telecommunications , machine learning , artificial intelligence , ecology , structural engineering , engineering , biology
Advances in wireless technologies and small computing devices, wireless sensor networks can be superior technology in many applications. Energy supply constraints are one of the most critical measures because they limit the operation of the sensor network; therefore, the optimal use of node energy has always been one of the biggest challenges in wireless sensor networks. Moreover, due to the limited lifespan of nodes in WSN and energy management, increasing network life is one of the most critical challenges in WSN. In this investigation, two computational distributions are presented for a dynamic wireless sensor network; in this fog-based system, computing load was distributed using the optimistic and blind method between fog networks. The presented method with the main four steps is called Distribution-Map-Transfer-Combination (DMTC) method. Also, Fuzzy Multiple Attribute Decision-Making (Fuzzy MADM) is used for clustering and routing network based on the presented distribution methods. Results show that the optimistic method outperformed the blind one and reduced energy consumption, especially in extensive networks; however, in small WSNs, the blind scheme resulted in an energy efficiency network. Furthermore, network growth leads optimistic WSN to save higher energy in comparison with blinded ones. Based on the results of complexity analysis, the presented optimal and blind methods are improved by 28% and 48%, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom