z-logo
open-access-imgOpen Access
Fast DOA Estimation Based on the Transform Domain Weighted Noise Subspace Fitting Algorithm for Generalized Sparse Array
Author(s) -
Chunxi Liu,
Zhikun Chen,
Dongliang Peng
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/9952575
Subject(s) - algorithm , subspace topology , computational complexity theory , computer science , noise (video) , signal subspace , frequency domain , domain (mathematical analysis) , direction of arrival , signal (programming language) , mathematics , artificial intelligence , image (mathematics) , telecommunications , mathematical analysis , antenna (radio) , computer vision , programming language
Compared with uniform arrays, a generalized sparse array (GSA) can obtain larger array aperture because of its larger element spacing, which improves the accuracy of DOA estimation. At present, most DOA estimation algorithms are only suitable for the uniform arrays, while a few DOA estimate algorithms that can be applied to the GSA are unsatisfactory in terms of computational speed and accuracy. To compensate this deficiency, an improved DOA estimation algorithm which can be applied to the GSA is proposed in this paper. First, the received signal model of the GSA is established. Then, a fast DOA estimation method is derived by combining the weighted noise subspace algorithm (WNSF) with the concept of “transform domain” (TD). Theoretical analysis and simulation results show that compared with the traditional multiple signal classification (MUSIC) algorithm and the traditional WNSF algorithm, the proposed algorithm has higher accuracy and lower computational complexity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom