z-logo
open-access-imgOpen Access
Classification of Mental Stress Using CNN-LSTM Algorithms with Electrocardiogram Signals
Author(s) -
Mingu Kang,
Siho Shin,
Jaehyo Jung,
Youn Tae Kim
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/9951905
Subject(s) - computer science , artificial intelligence , stress (linguistics) , mental stress , algorithm , pattern recognition (psychology) , speech recognition , medicine , philosophy , linguistics
The mental stress faced by many people in modern society is a factor that causes various chronic diseases, such as depression, cancer, and cardiovascular disease, according to stress accumulation. Therefore, it is very important to regularly manage and monitor a person's stress. In this study, we propose an ensemble algorithm that can accurately determine mental stress states using a modified convolutional neural network (CNN)- long short-term memory (LSTM) architecture. When a person is exposed to stress, a displacement occurs in the electrocardiogram (ECG) signal. It is possible to classify stress signals by analyzing ECG signals and extracting specific parameters. To maximize the performance of the proposed stress classification algorithm, fast Fourier transform (FFT) and spectrograms were applied to preprocess ECG signals and produce signals in both the time and frequency domains to aid the training process. As the performance evaluation benchmarks of the stress classification model, confusion matrices, receiver operating characteristic (ROC) curves, and precision-recall (PR) curves were used, and the accuracy achieved by the proposed model was 98.3%, which is an improvement of 14.7% compared to previous research results. Therefore, our model can help manage the mental health of people exposed to stress. In addition, if combined with various biosignals such as electromyogram (EMG) and photoplethysmography (PPG), it may have the potential for development in various healthcare systems, such as home training, sleep state analysis, and cardiovascular monitoring.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom