z-logo
open-access-imgOpen Access
A Hybridly Optimized LSTM-Based Data Flow Prediction Model for Dependable Online Ticketing
Author(s) -
Chunmei Fan,
Jiansheng Zhu,
Haroon Elahi,
Yang Lipeng,
Beibei Li
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/9951607
Subject(s) - computer science , artificial intelligence , data mining
Fifth-generation (5G) communication technologies and artificial intelligence enable the design and deployment of sophisticated solutions for enhanced user experience and superior network-based service delivery. However, the performance of the systems offering 5G-based services depends on various factors. In this paper, we consider the case of the online railway ticketing system in China that serves the needs of hundreds of millions of people daily. This system’s online access rates vary over time, and fluctuations are experienced, affecting its overall dependability and service quality. We use long short-term memory network, particle swarm optimization, and differential evolution to construct DP-LSTM—a hybridly optimized model to predict network flow for dependable and quality-enhanced service delivery. We evaluate the proposed model using real data collected over six months from the “12306 online ticketing” system. We compare the performance of the proposed model with mainstream network traffic prediction models. We use mean absolute percentage error, mean absolute error, and root mean square error for performance evaluation. Experimental results show the superiority of the proposed model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom