Integrated Optimization Strategy for Sustainable Shared Designated Driver Ferry Vehicle Scheduling
Author(s) -
Siqi Wang,
Jingbo Yin,
Rafi Ullah Khan
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/9950834
Subject(s) - schedule , tabu search , scheduling (production processes) , computer science , residual , mathematical optimization , energy consumption , operations research , transport engineering , real time computing , simulation , engineering , algorithm , mathematics , electrical engineering , operating system
The focus of this study is on optimizing the schedule adjustment scheme of shared designated driver ferry vehicles to obtain a sustainable and energy-efficient system to pick up and drop off designated drivers to serve drunk customers. A two-stage matching model for driver and customer supply and demand matching and driver ferry vehicle dispatching is designed in order to optimize the total distance travelled and minimize the generalized deviation costs. A maximum residual time adjustment algorithm is designed to reduce the logarithm of new interference demand, and a tabu search algorithm is used to solve the schedule adjustment scheme for ferry vehicles. The validity of the model and the algorithm is verified by a multiperiod example constructed in the Solomon test question bank. The result of numerical experiments shows that the proposed model and algorithm can solve the disruption adjustment scheduling strategy of shared designated driver ferry vehicles. The integrated optimization strategy can effectively improve the utilization rate and the operation efficiency of the shared driver ferry vehicles to reduce operation cost and energy consumption.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom