z-logo
open-access-imgOpen Access
Experimental Study of Rainfall Infiltration in an Analog Fracture-matrix System
Author(s) -
Zhen Zhong,
Huicai Gao,
Yunjin Hu
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/9949468
Subject(s) - infiltration (hvac) , materials science , matrix (chemical analysis) , complex fracture , wetting , fracture (geology) , geotechnical engineering , composite material , moisture , geology
In this study, an experimental apparatus was developed to investigate unsaturated infiltration in an analog fracture-matrix system. Fracture and adjacent matrix is simulated by sands with various particle sizes. Four rainfall infiltration experiments were performed on the analog fracture-matrix system at a constant rainfall rate of 100 mm/h. The process of rainfall infiltration is measured by a combination method of tensiometers and quick moisture apparatus. The measured results reveal that fracture-matrix interactions certainly exert influences on the hydraulic behaviour of unsaturated fractured matrix, and the fluid flow mainly infiltrates along the nonuniform paths within the matrix. Moreover, it is observed that the influences are greater when using a coarser sand to mimic the fracture. Specifically, the wetting phase in the matrix moves faster than that in the fracture; the fracture, therefore, acts as a vertical capillary barrier, but there exists lateral water exchange from the matrix to the fracture. Overall, this study has demonstrated the importance of fracture/matrix interactions, which should be considered when dealing with unsaturated flow through permeable matrices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom