Experience Weighted Learning in Multiagent Systems
Author(s) -
Yi Zou,
Jijuan Zhong,
Zhihao Jiang,
Zhang Hong,
Xuyu Pu
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/9948156
Subject(s) - adaptability , reinforcement learning , bounded rationality , computer science , stability (learning theory) , artificial intelligence , stochastic game , baseline (sea) , bounded function , multi agent system , mathematical optimization , rationality , fictitious play , face (sociological concept) , machine learning , nash equilibrium , mathematics , mathematical economics , ecology , mathematical analysis , oceanography , social science , sociology , political science , law , biology , geology
Agents face challenges to achieve adaptability and stability when interacting with dynamic counterparts in a complex multiagent system (MAS). To strike a balance between these two goals, this paper proposes a learning algorithm for heterogeneous agents with bounded rationality. It integrates reinforcement learning as well as fictitious play to evaluate the historical information and adopt mechanisms in evolutionary game to adapt to uncertainty, which is referred to as experience weighted learning (EWL) in this paper. We have conducted multiagent simulations to test the performance of EWL in various games. The results demonstrate that the average payoff of EWL exceeds that of the baseline in all 4 games. In addition, we find that most of the EWL agents converge to pure strategy and become stable finally. Furthermore, we test the impact of 2 import parameters, respectively. The results show that the performance of EWL is quite stable and there is a potential to improve its performance by parameter optimization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom