z-logo
open-access-imgOpen Access
Application of Virtual Display Technology of LCD Backlight Spectrum Optimization Algorithm Based on Linear Programming
Author(s) -
Yuan Cui,
Zhuyang Chen,
Cheng Huang,
Qian Gao
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/9947288
Subject(s) - backlight , computer science , luminous efficacy , gamut , transmittance , liquid crystal display , spectral power distribution , optics , linear programming , algorithm , computer vision , materials science , physics , layer (electronics) , composite material , operating system
In order to make the color of image display more realistic, optimize the use of energy, and improve the light efficiency of the module through reasonable spectral distribution, this paper proposes a backlight spectral optimization algorithm based on linear programming. With the goal of maximizing the backlight luminous efficiency, the theoretical maximum of the luminous efficiency of the backlight spectrum can be achieved by constructing a linear programming model. The research process is to obtain the optimal distribution of transmittance spectrum by linear programming method on the premise of ensuring the color gamut standard of display system. The results show that the light efficiency can be increased to 335.5 lm/W, while the original light efficiency of the system is less than 150 lm/W. With the goal of maximizing the light efficiency, light sources with narrow bandwidths such as lasers and quantum dot materials can be used to simulate and reconstruct these characteristic wavelengths. There will be easier to approach the ideal optimization spectrum and achieve the theoretical maximum luminous efficiency of 610.8 lm/W.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom