Comparative Study on Feature-Based Scoring Using Vector Space Modelling System
Author(s) -
Tarandeep Singh Walia,
Tarek Frikha,
Omar Cheikhrouhou,
Habib Hamam
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9946573
Subject(s) - novelty , computer science , cosine similarity , similarity (geometry) , feature vector , artificial intelligence , data mining , feature (linguistics) , notation , vector space model , machine learning , function (biology) , novelty detection , pattern recognition (psychology) , mathematics , image (mathematics) , philosophy , linguistics , theology , arithmetic , evolutionary biology , biology
This paper shows the importance of automated scoring (AS) and that it is better than human graders in terms of degree of reproducibility. Considering the potential of the automated scoring system, there is further a need to refine and develop the existing system. The paper goes through the state of the art. It presents the results concerning the problems of existing systems. The paper also presents the semantic features that are indispensable in the scoring system as they have complete content. Moreover, in the present research, a huge deviation has been exhibited by the system which has been shown later in performance analysis of the study, and this clearly indicates the novelty and improved results of the system. It explains the algorithms included in the methodology of this proposed system. The novelty of our work consists in the use of its own similarity function and its notation mechanism. It does not use the cosine similarity function between two vectors. This paper describes and develops a more accurate system which employs a statistical method for scoring. This system adopts and integrates rule-based semantic feature analysis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom