z-logo
open-access-imgOpen Access
Prediction of Frequency Response Function for Cylindrical Thin-Walled Workpiece with Fixture Support Constraints
Author(s) -
Jinjie Jia,
Yuwen Sun,
Jinbo Niu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9946310
Subject(s) - fixture , modal , superposition principle , rigidity (electromagnetism) , frequency response , machining , modal analysis , engineering , structural engineering , control theory (sociology) , mechanical engineering , computer science , mathematical analysis , mathematics , finite element method , materials science , electrical engineering , control (management) , artificial intelligence , polymer chemistry
Auxiliary fixtures are widely used to enhance the rigidity of cylindrical thin-walled workpieces (CTWWs) in the machining process. Nevertheless, the accurate and efficient prediction of frequency response function (FRF) for the workpiece-fixture system remains challenging due to the complicated contact constraints between workpiece and fixture. This paper proposes an analytical solution for the comprehensive FRF analysis of the CTWW-fixture system. Firstly, based on the vector mechanics, the mode shape functions of the workpiece are presented using the classical theory of thin shell. The variable separation method is utilized to deal with the inter-mode coupling of the workpiece. Secondly, the motion equation of the CTWW with fixture constraints is established using analytical mechanics from the viewpoint of energy balance. Finally, the FRFs of the CTWW-fixture system are derived by means of modal superposition. Experimental modal tests verify that the predicted FRFs are in good agreement with the measured curves.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom