z-logo
open-access-imgOpen Access
Single-Image Super-Resolution Using Panchromatic Gradient Prior and Variational Model
Author(s) -
Yingying Xu,
Jianhua Li,
Haifeng Song,
Lei Du
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9944385
Subject(s) - panchromatic film , structure tensor , regularization (linguistics) , image (mathematics) , artificial intelligence , computer science , resolution (logic) , consistency (knowledge bases) , computer vision , algorithm , rank (graph theory) , image resolution , mathematics , pattern recognition (psychology) , combinatorics
Single-image super-resolution (SISR) is a resolution enhancement technique and is known as an ill-posed problem. Motivated by the idea of pan-sharping, we propose a novel variational model for SISR. The structure tensor of the input low-resolution image is exploited to obtain the gradient of an imaginary panchromatic image. Then, by constraining the gradient consistency, the image edges and details can be better recovered during the procedure of restoration of high-resolution images. Besides, we resort to the nonlocal sparse and low-rank regularization of image patches to further improve the super-resolution performance. The proposed variational model is efficiently solved by ADMM-based algorithm. We do extensive experiments in natural images and remote sensing images with different magnifying factors and compare our method with three classical super-resolution methods. The subjective visual impression and quantitative evaluation indexes both show that our method can obtain higher-quality results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom