Some New Robust Estimators for Circular Logistic Regression Model with Applications on Meteorological and Ecological Data
Author(s) -
Shokrya S. Alshqaq,
Abdullah Ali H. Ahmadini,
Ali Abuzaid
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9944363
Subject(s) - estimator , logistic regression , outlier , mathematics , leverage (statistics) , statistics
Maximum likelihood estimation ( MLE ) is often used to estimate the parameters of the circular logistic regression model due to its efficiency under a parametric model. However, evidence has shown that the classical MLE extremely affects the parameter estimation in the presence of outliers. This article discusses the effect of outliers on circular logistic regression and extends four robust estimators, namely, Mallows, Schweppe, Bianco and Yohai estimator BY , and weighted BY estimators, to the circular logistic regression model. These estimators have been successfully used in linear logistic regression models for the same purpose. The four proposed robust estimators are compared with the classical MLE through simulation studies. They demonstrate satisfactory finite sample performance in the presence of misclassified errors and leverage points. Meteorological and ecological datasets are analyzed for illustration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom