z-logo
open-access-imgOpen Access
Adaptive Fuzzy Consensus Tracking Control for Nonlinear Multiagent Systems with Time-Varying Delays and Constraints
Author(s) -
Jie Lan,
Tongyu Xu
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9940257
Subject(s) - control theory (sociology) , nonlinear system , tracking error , fuzzy logic , controller (irrigation) , computer science , bounded function , multi agent system , lyapunov stability , piecewise , algebraic graph theory , convergence (economics) , mathematics , mathematical optimization , control (management) , artificial intelligence , mathematical analysis , physics , quantum mechanics , agronomy , economics , biology , economic growth
This paper proposes an adaptive fuzzy distributed consensus tracking control scheme for a class of uncertain nonlinear dynamic multiagent systems (MASs) with state time-varying delays and state time-varying constraints. The existing controllers with Lyapunov–Krasovskii functions (LKFs) were not suitable to address time-varying delays and time-varying constraints in nonlinear MASs simultaneously. State constraints further increase the difficulty of controller design and stability analysis, especially for nonstrict feedback systems. Fuzzy logic systems (FLSs) tackle the approximation of unknown dynamics functions and parameters. Especially when the distributed consensus tracking error is infinitely close to the origin, although there is no singular value, it would lead to the rapid growth of control rate or uncontrollability. Constructing appropriate piecewise functions can effectively avoid the above occurrence and accelerate convergence. Based on Lyapunov stability theory and algebraic graph theory, the constructed tracking control can ensure states within defined time-varying constraint bounds and eliminate the influence of time delays. All signals in closed-loop systems can be guaranteed semiglobally uniformly ultimately bounded (SUUB). Finally, the validity of the theoretical method is verified by the simulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom