Improved Deep Hashing with Scalable Interblock for Tourist Image Retrieval
Author(s) -
Jiangfan Feng,
Wenzheng Sun
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/9937061
Subject(s) - hash function , discriminative model , computer science , feature hashing , image retrieval , artificial intelligence , scalability , pattern recognition (psychology) , hash table , binary code , deep learning , convolutional neural network , feature (linguistics) , semantics (computer science) , image (mathematics) , binary number , double hashing , mathematics , database , linguistics , philosophy , computer security , arithmetic , programming language
Tourist image retrieval has attracted increasing attention from researchers. Mainly, supervised deep hash methods have significantly boosted the retrieval performance, which takes hand-crafted features as inputs and maps the high-dimensional binary feature vector to reduce feature-searching complexity. However, their performance depends on the supervised labels, but few labeled temporal and discriminative information is available in tourist images. This paper proposes an improved deep hash to learn enhanced hash codes for tourist image retrieval. It jointly determines image representations and hash functions with deep neural networks and simultaneously enhances the discriminative capability of tourist image hash codes with refined semantics of the accompanying relationship. Furthermore, we have tuned the CNN to implement end-to-end training hash mapping, calculating the semantic distance between two samples of the obtained binary codes. Experiments on various datasets demonstrate the superiority of the proposed approach compared to state-of-the-art shallow and deep hashing techniques.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom