z-logo
open-access-imgOpen Access
Application of the WNN-Based SCG Optimization Algorithm for Predicting Soft Soil Foundation Engineering Settlement
Author(s) -
Guihua Li,
Chenyu Han,
Hong Mei,
Shuai Chen
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/9936285
Subject(s) - settlement (finance) , soft computing , backpropagation , artificial neural network , computer science , foundation (evidence) , convergence (economics) , conjugate gradient method , algorithm , mathematical optimization , artificial intelligence , mathematics , geography , archaeology , world wide web , economic growth , economics , payment
Settlement prediction in soft soil foundation engineering is a newer technique. Predicting soft soil settling has long been one of the most challenging techniques due to difficulties in soft soil engineering. To overcome these challenges, the wavelet neural network (WNN) is mostly used. So, after assessing its estimate performance, two elements, early parameter selection and system training techniques, are chosen to optimize the traditional WNN difficulties of readily convergence to the local infinitesimal point, low speed, and poor approximation performance. The number of hidden layer nodes is determined using a self-adaptive adjustment technique. The wavelet neural network (WNN) is coupled with the scaled conjugate gradient (SCG) to increase the feasibility and accuracy of the soft fundamental engineering settlement prediction model, and a better wavelet network for the soft ground engineering settlement prediction is suggested in this paper. Furthermore, we have proposed the technique of locating the early parameters based on autocorrelation. The settlement of three types of traditional soft foundation engineering, including metro tunnels, highways, and high-rise building foundations, has been predicted using our proposed model. The findings revealed that the model is superior to the backpropagation neural network and the standard WNN for solving problems of approximation performance. As a result, the model is acceptable for soft foundation engineering settlement prediction and has substantial project referential value.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom