A Hybrid Deep Neural Network for Electricity Theft Detection Using Intelligent Antenna-Based Smart Meters
Author(s) -
Ashraf Ullah,
Nadeem Javaid,
Adamu Sani Yahaya,
Tanzeela Sultana,
Fahad Ahmad Al-Zahrani,
Fawad Zaman
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/9933111
Subject(s) - computer science , particle swarm optimization , benchmark (surveying) , recurrent neural network , artificial intelligence , convolutional neural network , overfitting , deep learning , support vector machine , artificial neural network , genetic algorithm , data mining , machine learning , geodesy , geography
This paper presents a hybrid model, named as hybrid deep neural network, which combines convolutional neural network, particle swarm optimization, and gated recurrent unit, termed as convolutional neural network-particle swarm optimization-gated recurrent unit model. The major aims of the model are to perform accurate electricity theft detection and to overcome the issues in the existing models. The issues include overfitting and inability of the models to handle imbalanced data. For this purpose, the electricity consumption data of smart meters is taken from state grid corporation of China. An electric utility company gathers the data from the intelligent antenna-based smart meters installed at the consumers’ end. The dataset contains real-time data with missing values and outliers. Therefore, it is first preprocessed to get the refined data followed by feature engineering for selection and extraction of the finest features from the dataset using convolutional neural network. The classification of electricity consumers is performed by dividing them into honest and fraudulent classes using the proposed particle swarm optimization-gated recurrent unit model. The proposed model is evaluated by performing simulations in terms of several performance measures that include accuracy, area under the curve, F 1 -score, recall, and precision. The comparison between the proposed hybrid deep neural network and benchmark models is also performed. The benchmark models include gated recurrent unit, long short term memory, logistic regression, support vector machine, and genetic algorithm-based gated recurrent unit. The results indicate that the proposed hybrid deep neural network model is more efficient in handling class imbalanced issues and performing electricity theft detection. The robustness, accuracy, and generalization of the model are also analyzed in the proposed work.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom