Comparative Application of Time-Frequency Methods on Strong Motion Signals
Author(s) -
Mohammad Ashtari Jafari
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/9933078
Subject(s) - hilbert–huang transform , harmonic wavelet transform , fourier transform , short time fourier transform , time–frequency analysis , wavelet , constant q transform , wavelet transform , fractional fourier transform , computer science , mathematics , continuous wavelet transform , algorithm , discrete wavelet transform , filter (signal processing) , fourier analysis , mathematical analysis , artificial intelligence , computer vision
Real-world physical signals are commonly nonstationary, and their frequency details change with time and do not remain constant. Fourier transform that uses infinite sine/cosine waves as basis functions represents frequency constituents of signals but does not show the variations of the signal frequency contents over time. Multiresolution demonstration of the time-frequency domain may be achieved by the techniques that can support adjustable resolution in time and frequency. Earthquake strong motion signals are nonstationary and indicate time-varying frequency content due to the scattering from the source to the site. In this paper, we applied short-time Fourier transform, S-transform, continuous wavelet transform, fast discrete wavelet transform, synchrosqueezing transform, synchroextracting transform, continuous wavelet synchrosqueezing, filter bank synchrosqueezing, empirical mode decomposition, and Fourier decomposition methods on the near-source strong motion signals from the 7 May 2020 Mosha-Iran earthquake to study and compare the frequency content of this event estimated by these methods. According to the results that are examined by Renyi entropy and relative error, synchroextracting performed better in terms of energy concentration, and the Fourier decomposition method revealed the lowest difference between the original and reconstructed records.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom