A BSDE Approach to Stochastic Differential Games with Regime Switching
Author(s) -
Jiahui Li,
Maoning Tang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9930142
Subject(s) - differential game , stochastic differential equation , mathematics , bellman equation , viscosity solution , dynamic programming , upper and lower bounds , differential (mechanical device) , mathematical economics , differential equation , mathematical optimization , mathematical analysis , physics , thermodynamics
In this paper, we study a two-player zero-sum stochastic differential game with regime switching in the framework of forward-backward stochastic differential equations on a finite time horizon. By means of backward stochastic differential equation methods, in particular that of the notion from stochastic backward semigroups, we prove a dynamic programming principle for both the upper and the lower value functions of the game. Based on the dynamic programming principle, the upper and the lower value functions are shown to be the unique viscosity solutions of the associated upper and lower Hamilton–Jacobi–Bellman–Isaacs equations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom