Anticancer Action of Xiaoxianxiong Tang in Non-Small Cell Lung Cancer by Pharmacological Analysis and Experimental Validation
Author(s) -
Rongzhen Ding,
Lijing Jiao,
Shuliu Sang,
Yinan Yin,
Yichao Wang,
Yabin Gong,
Ling Xu,
Ling Bi
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/9930082
Subject(s) - pi3k/akt/mtor pathway , drugbank , kegg , protein kinase b , lung cancer , biology , interactome , signal transduction , computational biology , cancer research , pharmacology , bioinformatics , medicine , oncology , microbiology and biotechnology , transcriptome , genetics , gene expression , gene , drug
Xiaoxianxiong Tang (XXXT) is a well-known traditional Chinese medicine formula. Evidence is emerging supporting the benefits of XXXT in ameliorating therapy for non-small cell lung cancer (NSCLC). The purpose of this study aimed to explore the effects and mechanisms of XXXT through network pharmacological analysis and biological validation. TCMSP database was used to identify potentially active compounds in XXXT with absorption, distribution, metabolism, excretion screening, and their potential targets. The disease targets related to NSCLC were predicted by searching for Therapeutic Target database, GeneCards database, DrugBank database, and DisGeNET database. Of the 4385 NSCLC-related targets, 156 targets were also the targets of compounds present in XXXT. Subsequently, GO function and KEGG pathway enrichment and PPI network analyses revealed that, of the 95 targets and 20 pathways influenced by 20 ingredients in XXXT, 20 targets were associated with patient survival, and XXXT could exert an inhibitory action on the PI3K-AKT signaling pathway. Moreover, XXXT restrained the proliferation of A549 and H460 cells in a concentration-dependent manner and suppressed the mRNA and protein levels of key targets CCNA2, FOSL2, and BIRC5 closely linked to the PI3K-AKT pathway. Hence, XXXT has the potential to improve therapy for NSCLC by targeting the PI3K-AKT signaling pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom