Simulating the Sustainability of Xiong’an New Area Undertaking the Industrial Transfer from Beijing
Author(s) -
Fangqu Niu
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9927397
Subject(s) - beijing , modernization theory , transfer (computing) , sustainability , population , environmental pollution , resource (disambiguation) , secondary sector of the economy , business , china , sustainable development , natural resource economics , environmental protection , environmental science , economic growth , computer science , geography , economy , economics , political science , ecology , computer network , demography , archaeology , sociology , parallel computing , biology , law
The national new area Xiong’an has been established to take over the noncapital functions of Beijing in China. In light of local resources and environmental constraints, it is important to clarify the mode of industrial transfer for Xiong’an new area (XNA) to achieve the developmental goals. This study simulates and analyzes the speed of industrial transfer and the capacities of XNA in light of resource and environmental constraints. The results show that, to just realize modernization in 2035, the transfer rate of the secondary industry and tertiary industry is annually 3.7 billion yuan and 6.4 billion yuan, respectively. But at this speed, the atmospheric environment will be overloaded by 2028. The minimum and maximum transfer rate to realize modernization in 2035 without overloading resources and environment are also specified as well as the total size of economy and population. The results indicate that land for the construction of XNA is rich, but local water is not sufficient to support industrial growth. The atmospheric environment of XNA is also an important limiting factor. It is thus necessary to reduce air pollution and increase the population and industrial scale of the area by increasing the transfer rate of the tertiary industry.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom