z-logo
open-access-imgOpen Access
The Importance of Feature Processing in Deep-Learning-Based Condition Monitoring of Motors
Author(s) -
Dileep Kumar,
Jawaid Daudpoto,
Nicholas R. Harris,
Muhammad Majid Hussain,
Sanaullah Mehran,
Imtiaz Hussain Kalwar,
Tanweer Hussain,
Tayab Din Memon
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/9927151
Subject(s) - condition monitoring , feature (linguistics) , fault (geology) , prime (order theory) , control engineering , fault detection and isolation , computer science , engineering , artificial intelligence , industrial engineering , machine learning , electrical engineering , philosophy , linguistics , mathematics , combinatorics , seismology , geology , actuator
The advent of deep learning (DL) has transformed diagnosis and prognosis techniques in industry. It has allowed tremendous progress in industrial diagnostics, has been playing a pivotal role in maintaining and sustaining Industry 4.0, and is also paving the way for industry 5.0. It has become prevalent in the condition monitoring of industrial subsystems, a prime example being motors. Motors in various applications start deteriorating due to various reasons. Thus, the monitoring of their condition is of prime importance for sustaining the operation and maintaining efficiency. This paper presents a state-of-the-art review of DL-based condition monitoring for motors in terms of input data and feature processing techniques. Particularly, it reviews the application of various input features for the effectiveness of DL models in motor condition monitoring in the sense of what problems are targeted using these feature processing techniques and how they are addressed. Furthermore, it discusses and reviews advances in DL models, DL-based diagnostic methods for motors, hybrid fault diagnostic techniques, points out important open challenges to these models, and signposts the prospective future directions for DL models. This review will assist researchers in identifying research gaps related to feature processing, so that they may effectively contribute toward the implementation of DL models as applied to motor condition monitoring.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom