z-logo
open-access-imgOpen Access
Vibration Response Characteristics and Application of Existing Railway Subgrade
Author(s) -
Junyun Zhang,
Zhuoling He,
Siyuan Chen,
Zhang Le
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/9926980
Subject(s) - subgrade , ballast , vibration , acceleration , structural engineering , reinforcement , attenuation , geotechnical engineering , engineering , geology , acoustics , physics , electrical engineering , optics , classical mechanics
The existing conventional methods of subgrade disease assessment are not suitable for the existing lines. There are many research studies on the vibration response and attenuation law of the railway subgrade, but few research studies focus on the vibration response and attenuation law caused by the weak subgrade. In this study, vibration response tests were carried out at different positions and depths of the subgrade before and after reinforcement improvement. The results show that vibration response near the ballast is obvious, and it attenuates with the increase of the horizontal distance from the rail; the vibration acceleration response of the subgrade after reinforcement changes greatly; the vibration response curve of the reinforced section is spindle shaped, and the vertical vibration acceleration response attenuates obviously at the depth of 6.5 m, only about 10% to 30% of the surface; the vibration acceleration of the subgrade with reinforcement at the depth of 4.5 m attenuates to 60% of the surface; the vibration acceleration of the subgrade without reinforcement at the depth of 4.5 m attenuates to 50%–60% of the surface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom