z-logo
open-access-imgOpen Access
A Novel Multiband Fractal Antenna for Wireless Application
Author(s) -
Lan Wang,
Jianguo Yu,
Tangyao Xie,
Kun Bi
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/9926753
Subject(s) - fractal antenna , wimax , microstrip antenna , antenna (radio) , fractal , wireless , electrical engineering , physics , coaxial antenna , electronic engineering , telecommunications , engineering , mathematics , mathematical analysis
This paper proposes a novel multiband antenna using circle and triangle fractals for wireless application. By cutting a triangle slot in the circular monopole, a novel fractal method of the circular nested triangle structure is presented. The above structure is iterated four times, which forms the proposed fractal antenna. The antenna adopts the microstrip feeding method. In order to improve out band rejection and expand bandwidth, a ring resonator is designed on the back of the dielectric plate. The designed antenna covers 1.8 GHz–2.9 GHz applied to Bluetooth, TD-SCDMA, WCDMA, CDMA2000, and LTE33-41, 3.4 GHz–4.6 GHz applied to LTE 42/43 and WiMAX, and 5 GHz–5.6 GHz applied to WLAN. The substrate is FR4 with a dielectric constant of 4.4 and a loss tangent of 0.02. The size of the fabricated antenna is 87.5 × 61 × 1.6 mm. The measured pick gain achieves 2.98 dBi, 2.58 dBi, and 3.34 dBi at 2.6 GHz, 3.8 GHz, and 5.3 GHz, respectively. The measurement and simulation results are in good agreement, which verifies the rationality of the design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom