z-logo
open-access-imgOpen Access
Gasotransmitter CO Attenuates Bleomycin-Induced Fibroblast Senescence via Induction of Stress Granule Formation
Author(s) -
Yingqing Chen,
Feng Jiang,
Guangyao Kong,
Shuo Yuan,
Yuying Cao,
Qinggao Zhang,
Qianqian Wang,
Liping Liu
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/9926284
Subject(s) - senescence , bleomycin , fibroblast , microbiology and biotechnology , chemistry , granule (geology) , cellular senescence , biology , biochemistry , phenotype , genetics , in vitro , chemotherapy , gene , paleontology
Cellular senescence is recognized as a phenomenon wherein a proliferative cell undergoes a permanent growth arrest. The accumulation of senescent cells over time can become harmful and result in diseases and physiological decline. Plasminogen activator inhibitor (PAI-1) is considered as a critical marker and mediator of cellular senescence. The formation of stress granules (SGs) could prevent senescence through the sequestration of PAI-1, and we previously suggested that exogenous carbon monoxide (CO) could induce SG assembly via integrated stress response (ISR). Although CO is known to possess anti-inflammatory, antioxidative, and antiapoptotic properties, whether it exerts antisenescent effect is still not well defined. Here, to address whether CO-induced SGs could protect against cellular senescence, we first treated lung fibroblasts with bleomycin (BLM) to establish DNA damage-induced cellular senescence, and observed a significant increase of several hallmarks of senescence through SA- β -gal staining, immunofluorescence, qRT-PCR, and Western blot assay. However, pre- and posttreatment of CO could remarkably attenuate these senescent phenotypes. According to our immunofluorescence results, CO-induced SGs could inhibit BLM-induced cellular senescence via sequestration of PAI-1, while it was abolished after the cotreatment of ISR inhibitor (ISRIB) due to the inhibition of SG assembly. Overall, our results proposed a novel role of CO in suppressing bleomycin-induced lung fibroblast senescence through the assembly of SGs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom