Partially Accelerated Model for Analyzing Competing Risks Data from Gompertz Population under Type-I Generalized Hybrid Censoring Scheme
Author(s) -
Abdulaziz S. Alghamdi
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/9925094
Subject(s) - censoring (clinical trials) , accelerated life testing , computer science , estimator , monte carlo method , reliability (semiconductor) , gompertz function , bayes' theorem , statistics , mathematics , reliability engineering , bayesian probability , engineering , weibull distribution , power (physics) , physics , quantum mechanics
In reliability engineering and lifetime analysis, many units of the product fail with different causes of failure, and some tests require stress higher than normal stress. Also, we need to design the life experiments which present methodology for formulating scientific and engineering problems using statistical models. So, in this paper, we adopted a partially constant stress accelerated life test model to present times to failure in a small period of time for Gompertz life products. Also, considering that, units are failing with the only two independent causes of failure and tested under type-I generalized hybrid censoring scheme the data built. Obtained data are analyzed with two methods of estimations, maximum likelihood and Bayes methods. These two methods are used to construct the point and interval estimators with the help of the MCMC method. The developed results are measured and compared under Monte Carlo studying. Also, a data set is analyzed for illustration purposes. Finally, some comments are presented to describe the numerical results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom