Exploring the Detection Accuracy of Concrete Cracks Using Various CNN Models
Author(s) -
Mohammed Ameen Mohammed,
Zheng Han,
Yange Li
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/9923704
Subject(s) - convolutional neural network , normalization (sociology) , computer science , task (project management) , artificial neural network , reinforced concrete , artificial intelligence , pattern recognition (psychology) , structural engineering , materials science , composite material , engineering , systems engineering , sociology , anthropology
Automatic crack detection with the least amount of workforce has become a crucial task in the inspection and evaluation of the performances of concrete structure in civil engineering. Recently, although many concrete crack detection models based on convolutional neural networks (CNNs) have been developed, the accuracy of the proposed models varies. Up-to-date, the issue regarding the convolutional neural network architecture with best performance for detecting concrete cracks is still debated in many previous studies. In this paper, we choose three established open-source CNN models (Model1, Model2, and Model3) which have been well-illustrated and verified in previous studies and test them for the purpose of crack detection of concrete structures. The chosen three models are trained using a concrete crack dataset containing 40,000 images those with 227 × 227-pixel in size. The performance of three different convolutional neural network (CNN) models was then evaluated. The comprehensive comparison result indicates that Model2 which used batch normalization is capable of the best performance amongst the three models as selected for concrete cracks detection, with recording the highest classification accuracy and low loss. In a conclusion, we recommend Model2 for a concrete crack detection task.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom