z-logo
open-access-imgOpen Access
Gaussian Perturbation Specular Reflection Learning and Golden-Sine-Mechanism-Based Elephant Herding Optimization for Global Optimization Problems
Author(s) -
Yuxian Duan,
Changyun Liu,
Li Song,
Xiangke Guo,
Chunlin Yang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/9922192
Subject(s) - specular reflection , herding , computer science , gaussian , mechanism (biology) , sine , global optimization , perturbation (astronomy) , reflection (computer programming) , optimization problem , mathematical optimization , artificial intelligence , optics , physics , mathematics , algorithm , geography , astronomy , programming language , geometry , quantum mechanics , forestry
Elephant herding optimization (EHO) has received widespread attention due to its few control parameters and simple operation but still suffers from slow convergence and low solution accuracy. In this paper, an improved algorithm to solve the above shortcomings, called Gaussian perturbation specular reflection learning and golden-sine-mechanism-based EHO (SRGS-EHO), is proposed. First, specular reflection learning is introduced into the algorithm to enhance the diversity and ergodicity of the initial population and improve the convergence speed. Meanwhile, Gaussian perturbation is used to further increase the diversity of the initial population. Second, the golden sine mechanism is introduced to improve the way of updating the position of the patriarch in each clan, which can make the best-positioned individual in each generation move toward the global optimum and enhance the global exploration and local exploitation ability of the algorithm. To evaluate the effectiveness of the proposed algorithm, tests are performed on 23 benchmark functions. In addition, Wilcoxon rank-sum tests and Friedman tests with 5% are invoked to compare it with other eight metaheuristic algorithms. In addition, sensitivity analysis to parameters and experiments of the different modifications are set up. To further validate the effectiveness of the enhanced algorithm, SRGS-EHO is also applied to solve two classic engineering problems with a constrained search space (pressure-vessel design problem and tension-/compression-string design problem). The results show that the algorithm can be applied to solve the problems encountered in real production.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom