Airborne Laser Communication System with Automated Tracking
Author(s) -
Xizheng Ke,
Hanli Liang
Publication year - 2021
Publication title -
international journal of optics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.263
H-Index - 17
eISSN - 1687-9392
pISSN - 1687-9384
DOI - 10.1155/2021/9920368
Subject(s) - tracking (education) , computer science , detector , free space optical communication , tracking system , laser , servo , servomechanism , communications system , laser tracker , computer vision , real time computing , artificial intelligence , optics , telecommunications , kalman filter , engineering , physics , electrical engineering , psychology , pedagogy
The acquisition, alignment, and tracking system is an important part of airborne laser communication and is the prerequisite and guarantee for the normal communication link. In order to solve the problem of automatic tracking of laser communication links in the airborne environment, the rapid capture, alignment, and tracking of beams between terminals are realized. This article proposes a stepping motor as a control servo system and a four-quadrant detector as an automatic tracking method for the detection unit. The pulse width modulation signal controls the rotation speed of the stepping motor and combines the position distribution of the light spot on the four-quadrant detector to achieve high-precision beam tracking. On this basis, indoor simulation experiments are carried out. After many experiments, the tracking accuracy is better than 2.5 μrad, which shows that the system can be applied to airborne laser communication, and it is verified that this method has good automatic tracking performance for airborne laser communication.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom