z-logo
open-access-imgOpen Access
Martial Arts Competitive Decision-Making Algorithm Based on Improved BP Neural Network
Author(s) -
Huipeng Lv
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/9920186
Subject(s) - martial arts , artificial neural network , competition (biology) , computer science , artificial intelligence , algorithm , machine learning , set (abstract data type) , convolutional neural network , visual arts , art , ecology , biology , programming language
The main body of modern Chinese martial arts competition is the strategy, and fighting has just started in sports competitions. Strategy and action correspond to each other and practice as a set. Therefore, constructing the Chinese martial arts competition decision-making algorithm and perfecting the martial arts competition are intuitive and essential. The formulation of martial arts competition strategies requires scientific analysis of athletic data and more accurate predictions. Based on this observation, this paper combines the popular neural network technology to propose a novel additional momentum-elastic gradient descent. The BP neural network adapts to the learning rate. The algorithm is improved for the traditional BP neural network, such as selecting learning step length, the difficulty of determining the size, and direction of the weight, and the learning rate is not easy to control. The experimental results show that this paper's algorithm has improved both network scale and running time and can predict martial arts competition routines and formulate scientific strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom