Prediction of Grain Yield in Henan Province Based on Grey BP Neural Network Model
Author(s) -
Bingjun Li,
Yifan Zhang,
Shuhua Zhang,
Wenyan Li
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/9919332
Subject(s) - artificial neural network , computer science , grey relational analysis , convolutional neural network , artificial intelligence , robustness (evolution) , generalization , feature selection , machine learning , pattern recognition (psychology) , data mining , statistics , mathematics , biology , mathematical analysis , biochemistry , gene
BP neural network (BPNN) is widely used due to its good generalization and robustness, but the model has the defect that it cannot automatically optimize the input variables. In response to this problem, this study uses the grey relational analysis method to rank the importance of input variables, obtains the key variables and the best BPNN model structure through multiple training and learning for the BPNN models, and proposes a variable optimization selection algorithm combining grey relational analysis and BP neural network. The predicted values from the metabolic GM (1, 1) model for key variables was used as input to the best BPNN model for prediction modeling, and a grey BP neural network model prediction model (GR-BPNN) was proposed. The long short-term memory neural network (LSTM), convolutional neural network (CNN), traditional BP neural network (BP), GM (1, N) model, and stepwise regression (SR) are also implemented as benchmark models to prove the superiority and applicability of the new model. Finally, the GR-BPNN forecasting model was applied to the grain yield forecast of the whole province and subregions for Henan Province. The forecasting results found that the growth rate of grain production in Henan Province slowed down and the center of gravity for grain production shifted northwards.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom