z-logo
open-access-imgOpen Access
Effect of CaO on the Autogenous Shrinkage of Alkali‐Activated Slag Mortar
Author(s) -
Dengdeng Zheng,
Tao Ji,
Wang Guo-jie
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/9918834
Subject(s) - materials science , shrinkage , slag (welding) , mortar , alkali metal , composite material , metallurgy , physics , quantum mechanics
The autogenous shrinkage of alkali-activated slag (AAS) is significantly higher than that of ordinary Portland cement (OPC). The higher risk of concrete cracking due to autogenous shrinkage is a critical drawback to wider use of this promising alternative binder. The effect of CaO content on the autogenous shrinkage of AAS mortar was investigated. The autogenous shrinkage of AAS mortars was determined by comparator. The pore structure of the pastes was determined by mercury intrusion porosimetry. The hydration products of the pastes were determined by Fourier transform-infrared, thermogravimetric analysis, X-ray diffraction, and 29Si solid-state magic-angle spinning nuclear magnetic resonance. The results show that the amount of portlandite increases as CaO content increases. CaO in the paste causes the partial replacement of C-S-H(I) (low stiffness) by C-S-H(II) (high stiffness). The hydration reaction of AAS is inhibited by the addition of CaO. The increase of polymerization degree of C-(A-)S-H and rearrangement of C-S-H(I) during hydration are inhibited by the addition of CaO, and micropores closure is also inhibited. Therefore, the autogenous shrinkage of AAS mortar decreases with the increase of CaO content.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom